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SUMMARY

Numerical uncertainties are quantified for calculations of transonic flow around a divergent trailing edge (DTE)
supercritical aerofoil. The Reynolds-averaged Navier–Stokes equations are solved using a linearized block
implicit solution procedure and mixing-length turbulence model. This procedure has reproduced measurements
around supercritical aerofoils with blunt trailing edges that have shock, boundary layer and separated regions.
The present effort quantifies numerical uncertainty in these calculations using grid convergence indices which
are calculated from aerodynamic coefficients, shock location, dimensions of the recirculating region in the wake
of the blunt trailing edge and distributions of surface pressure coefficients. The grid convergence index is almost
uniform around the aerofoil, except in the shock region and at the point where turbulence transition was fixed.
The grid convergence index indicates good convergence for lift but only fair convergence for moment and drag
and also confirms that drag calculations are more sensitive to numerical error.

KEY WORDS: computational fluid dynamics; transonic airfoils; numerical uncertainty

1. INTRODUCTION

Supercritical aerofoils are designed to have a roof-top pressure distribution1 and this usually results in
nearly parallel upper and lower surfaces near the trailing edges.2 A sharp trailing edge results in a
very thin structure in this highly loaded aft section of the aerofoil and so blunt trailing edges are
preferred in practice, although the blunt shape causes base drag that increases overall drag in
transonic cruise.3 Henne and Gregg4 andHenne5 designed divergent trailing edge (DTE) aerofoils to
reduce drag creep on blunt supercritical aerofoils at high subsonic Mach numbers. DTE aerofoils are
designed by increasing the aerofoil thickness over the aft 10% of chord such that suction- and
pressure-side flows are diverging from each other at the trailing edge. This modification to a blunt
supercritical aerofoil effects an increase in the effective chord by lengthening the recirculation in the
wake6 with the result that the lift-to-drag ratio is increased, which significantly benefits aerofoil and
wing aerodynamic performance.5
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Calculations of transonic aerofoil flows are difficult in part because of the embedded supersonic
region in an otherwise subsonic flow. This supersonic region ends in a shock wave which extends into
the boundary layer on the suction side of the aerofoil and can induce flow separation on the surface.7,8

Viscous interaction between shock and boundary layer is a complex phenomenon which has a
significant influence on drag.9 Figure 1highlights the regions of potential problems in a transonic
aerofoil calculation. Region 1 is the interaction between boundary layer and shock. Here the flow
passes through a region of a strong adverse pressure gradient, which results in a thickening of the
boundary layer and can lead to local separation of the flow. The displacement effect of the boundary
layer reduces the effective camber in the rear of the aerofoil, and with supercritical aerofoils, which
are aft loaded, the loss of lift can be up to 25% when compared with a purely inviscid calculation.8

Region 2 is the trailing edge region. Here flow separation occurs at the sharp corners of the trailing
edge and a recirculation region extends into the wake. This region has been approximately modelled
by a bubble closure profile when boundary layer approximations are used, but it is preferred to
calculate its dimension by solution of the Navier–Stokes equations.10

Computational procedures for transonic aerofoils are reviewed for example byLock and
Williams,8 King and Williams,11 and Cebeciet al.12 and can be divided into two categories: first,
viscous–inviscid interaction methods13 which solve either integral8 or finite difference14 boundary
layer equations near the surface and either Euler15,16 or potential flow17,18 inviscid equations in the
freestream; second, field methods which solve the compressible Navier–Stokes equations with a
turbulence model in either finite difference19–21 or finite element22 form.

Henne5 calculated the transonic aerodynamics of DTE aerofoils by solving the inviscid Euler
equations and integral boundary layer equations using the viscous–inviscid interaction procedure of
Baueret al.2 The choice of boundary layer equations forcedHenne5 to input two approximations:
first, the shape of the recirculation in the wake was provided by empirically locating the streamline
that divided forward and reverse flow in the wake of the divergent trailing edge; second, an
experimental correlation was used to estimate base drag, since the code2 does not calculate any
variables, including pressure, in this region.Henne5 correlated results favourably with experiments
for cruise conditions, but, since the flow immediately aft of the trailing edge had to be guessed, its
influence on the observed increase in lift-to-drag ratio could not be investigated. This results in
approximation of the pressure distribution and cross-flow in the rear part of the aerofoil at angles of
attack higher than cruise conditions and thus the accuracy of the calculation of aerodynamic

Figure 1. Sketch of flow field around supercritical aerofoil in transonic flow
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coefficients is compromised.10 In the case of the divergent trailing edge, even in cruise conditions a
relatively large wake and recirculation region is present behind the trailing edge and this recirculation
region has a crucial influence on the performance of the aerofoil.14 Since boundary layer methods are
unable to predict flow in the separation region, which plays a significant role in the performance of
DTE aerofoils, the Navier–Stokes equations must be solved to calculate flow structures in the shock/
boundary layer interaction and the recirculation region downstream of blunt divergent trailing edges
on DTE aerofoils. A well-established Reynolds–averaged Navier–Stokes19,20 calculation procedure
was chosen for the present contribution for the following reasons: the entire flow field can be
calculated with a single set of equations; turbulence model approximations replace profile and
streamline closure assumptions; effects of the wake and normal pressure gradient, which are needed
in the vicinity of recirculation, are calculated; the matching of solutions to different equations at their
boundaries is eliminated. Experience suggests that computational efficiencies promised by interactive
methods might not be significant when compared with the present Navier–Stokes method in this
complex aerofoil flow.

The present study is a numerical assessment of the calculations byThompson and Lotz,14 who used
a Reynolds-averaged Navier–Stokes method to compare calculations on the DLBA 186Z and DLBA
243 DTE aerofoils developed byHenne.5 The two-dimensional, Reynolds-averaged Navier–Stokes
equations in conservative form were solved using the linearized block implicit numerical procedure
of Briley and McDonald,19 which employs centred spatial differences with adjustable numerical
dissipation. A mixing length turbulence model was used.Johnson and King23 showed in calculations
of a separation bubble behind a shock wave that results obtained from a simple mixing length model
show good agreement with results obtained with a two-equation turbulence model. Benchmark
calculations14 with an RAE 2822 aerofoil were in good agreement with well-established experimental
results. The advantages of this method are that the shape of the wake can be resolved and its effect on
the performance improvement of DTE aerofoils can be investigated.

The objective of this paper is to assess the grid dependence and numerical accuracy of the
aforementioned calculations. The following section describes the present choice of Navier–Stokes
computational procedure including solution algorithm, grid generation, boundary conditions,
turbulence model and grid dependence determination. In Section 3, solution convergence and grid
convergence of global aerodynamic parameters as well as local surface pressure along the aerofoil
surface are presented. Special consideration is given to the effect of the shock wave on local and
global accuracy of the solution. The paper ends with summary remarks on numerical uncertainty in
the present calculations and the implications for this approach when a shock is present in the flow
field.

2. COMPUTATIONAL FLUID DYNAMICS METHODOLOGY

Solution algorithm

The two-dimensional, Reynolds-averaged Navier–Stokes equations were solved here in
conservative form with the linearized block implicit numerical procedure ofBriley and
McDonald,19,20 which employs centred spatial differences with adjustable numerical dissipation.
The following equations for mass and momentum transport were solved.

Conservation of mass
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Conservation of momentum
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Adiabatic approximation

In the present flow there is no heat addition, so the stagnation enthalpyh0 is constant and given by

h0 �

T

�gÿ 1�M2
�

q2

2
; �4�

whereq2
� u2

� v
2
�w2. With the assumption for a perfect gas that

P � rT=gM2
; �5�

the adiabatic equation of state for pressure is

P � r h0 ÿ
q2

2

� �
gÿ 1
g

: �6�

Pressure is eliminated from the momentum equations with equation (6) and temperature is evaluated
from equation (5) after the flow field has been calculated. This approximation makes it unnecessary to
solve the energy equation and thus reduces the computational effort required to reach a converged
solution while having little effect on the calculated flow structure.

Shock treatment

Shock capturing was used to determine the location of the shock. A region with increased grid
density was placed in the anticipated shock location. Shocks were recognized as regions of steep
density gradients and streamwise velocity. The denser grid region was then refined to centre it on the
shock until the shock location remained stable. Shock capturing smears the shock over at least one
grid node, sometimes several, so shock position cannot be determined with absolute certainty.

Artificial viscosity

For high-Reynolds-number calculations it becomes necessary in the present procedure to introduce
an artificial viscosity or dissipation factor into the discretized transport equations. This stabilizes the
solution algorithm when boundary conditions are treated approximately, when coarse meshes are
used and when there are discontinuities such as shocks in the flow. An artificial viscosity term of the
form ezD2

zf, in which ez is given by
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whereReDz is the local effective mesh Reynolds number, is added to each of the discretized transport
equations, with being for the continuity equation andUx or Uy for the momentum equations. This
artificial viscosity term is preceded by a constantAVISC which is essentially the inverse cell
Reynolds number. The value ofAVISC is selected by the user to control the amount of artificial
viscosity added in various regions of the flow field and to allow its value to be reduced as the solution
proceeds. In all the present calculations it was initially set equal to 0�5 for the first 400 time steps and
then reduced to 0�05 following the recommendations ofDavoudzadehet al.6

Turbulence model approximations

The turbulence model used in this study was selected based on simplicity while providing
reasonable accuracy. The mixing length turbulence model, although not very complex, has provided
good agreement in previous work1,14,24,25when compared to experiments and calculations with thek–
e model, and the present calculations compare favourably with RAE 2822 experiments. In previous
benchmark calculations discussed below, recirculating, transonic and aerofoil flows with the present
Reynolds-averaged Navier–Stokes solution procedure were obtained, suggesting that this code
calculates the lift-to-drag ratio within less than 1% for supercritical aerofoils, although absolute
values of lift and drag are bounded by about 1�7% and 2�1% uncertainty respectively. The low errors
obtained forL=D and drag are perhaps fortuitous, since other calculations suggest an overprediction
of drag by about 5%. Measured and calculated flow structures, which includes shock and
recirculating flow, are in sensible agreement and are adequate for the conclusions presented herein.

The mixing length model selected here relates the Reynolds stresses to the flow variables as
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wheremt is the eddy or turbulent viscosity given by
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The mixing lengthl is obtained from equation (10), in whichy is the normal distance from the wall
andD is the van Driest damping coefficient given in equation (11):

l � min�lmax; kyD�; �10�

D � 1 ÿ exp ÿ

y�

27

� �

: �11�

In equations (10) and (11),k is the von Karman constant,l is determined from experiment andy� is
the dimensionless co-ordinate normal to the wall. Their values are

lmax � 0�09d; k � 0�4; y� � yut=n: �12�

The boundary layer thicknessd is the location where the local boundary layer velocity first equals
0�99 of the edge velocity. However, for the present aerofoil calculations there is no clear flow
location where the edge velocity becomes independent of the distance from the wall, so the boundary
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layer thickness was calculated from equation (13), in whichumax is the maximum velocity at each
streamwise location andd is effectively twice the distance from the wall to the location where
u=umax� 0�90:

d � 2�0y
�u=umax�c�: �13�

In the recirculating flow the mixing length is set with equation (14), in whichh is the local height of
the separated region:

lmin � 0�10hD: �14�

In the wake the mixing length is proportional to the wake thicknessd calculated from equation (15),
in which dps and dss are the thicknesses of the pressure- and suction-side boundary layers at the
trailing edge respectively andXTE is the trailing edge location:

d � �dps � dss� � 0�2�X ÿ XTE�: �15�

The present model does not calculate transition but rather fixes transition either at the location of
boundary trips in wind tunnel experiments or at the suction peak where laminar separation and
turbulent reattachment would be expected. Upstream of this location the laminar viscosity was
calculated according to the Sutherland viscosity law:

m
1
�T

1
� �

c1T3=2
1

c2 � T
1

: �16�

Boundary conditions

Boundary conditions are treated implicitly. At the inflow surface the total pressure is associated
with the streamwise momentum equation, the cross flow velocity components are set to zero, the
second derivative of the pressure is set equal to zero and the stagnation enthalpy equals the reference
total enthalpy.

For the exit boundary and the upper and lower boundaries the second derivatives of the velocity
components are set to zero, the pressure is defined and the second derivative of the reference total
enthalpy is set to zero. At the aerofoil surface, no-slip conditions require each velocity component to
be set equal to zero and the continuity equation is solved. The wall is adiabatic, with the change in
enthalpy set equal to zero.

Aerodynamic force coefficients

The coefficients of lift and drag were calculated by integration of the surface pressure and skin
friction over the surface of the aerofoil.

Workstation calculations

Calculations were performed on an IBM RISC 6000 Model 340 workstation with 64 MB RAM and
1 GB hard drive. Postprocessing with PLOT3D26 produced the flow vectors, pressure contours and
shock location presented below. Calculation times to reach convergence did not exceed 20 hours for
the finest grid and were less than 8 hours for the coarse grid.
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Benchmark calculations

The above CFD procedure needed to be validated by comparison with measurements in aerofoil
flows with relevant features. The transonic flow around an RAE 2822 aerofoil exhibits boundary-
layer and shock characteristics similar to those on DTE aerofoils. The 1980–81 Stanford
Conference27 assessed an RAE 2822 experiment, and based on this and subsequent recommenda-
tions, it was chosen to benchmark the CFD procedure described above. Flow structures were resolved
in the very small recirculation region downstream of the blunt trailing edge and calculated
aerodynamic coefficients compared well with experimental results.

Determination of grid dependence

The grid convergence index (GCI) proposed byRoache28 was used to obtain a measure of the grid
dependence of these calculations. TheGCI gives a uniform measure for systematic grid refinement
studies and a measure for the convergence of a discretized solution. It does not account for coding
errors or insufficient iterative convergence of a code. These issues are addressed in Section 3 and
prove that the solutions obtained with this code are viable and converged. TheGCI is based on the
generalized Richardson extrapolation and assumes that only ordered discretization errors exist, which
would vanish if the grid spacing were reduced to zero. For a second-order method the exact solution
could be represented from the solutions of a fine grid (h1) and a coarse grid (h2) by

f �exact� �
h2

2 f1 ÿ h2
1 f2

h2
2 ÿ h2

1

� � � � : �17�

If the method used is a second-order method with central differencing, like the method used here,
f [exact] is of fourth order. Defining the refinement ratio

r � h2=h1 �18�

andp as the order of the method,f [exact] becomes

f �exact� � f1 �
f2 ÿ f1

rp
ÿ 1

: �19�

The relative error of the fine grid is then

e �

f2 ÿ f1

f1
�20�

and the fractional error is

E1�fine grid� �
E

rp
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: �21�

The grid convergence index relates general grid refinement results to the results obtained from grid
doubling (r � 2) with a second-order method (p� 2). The resulting definition of a grid convergence
index for a comparison with a fine grid is

GCI �fine grid� �
3jej

rp
ÿ 1

; �22�

which reduces toGCI� jej for grid doubling with a second-order method. In many cases it makes
economical sense to do only one calculation with a fine grid as reference, but use the course grid for
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the main calculations. For this case, equation (17) is solved for the error off2, which results in the
following GCI for a coarse grid solution:

GCI �coarse grid� �
3jejr p

r p
ÿ 1

�23a�

or

GCI �coarse grid� � r p
� GCI �fine grid�: �23b�

The Richardson extrapolation does not apply through discontinuities such as the shock encountered
on the upper surface of the aerofoils used in these calculations. However, since the shock is a
relatively localized discontinuity, its effect on the validity of the Richardson assumption should be
small. The effect of the shock on the error estimation will be discussed in the following section. It
should also be mentioned that this method allows determination of the grid dependence for arbitrary
values of grid refinement. In this case the refinement ratios were 1�27 and 1�32 respectively, which
represents a relatively narrow band of total refinement ratio 1�68 from coarse grid to fine grid. It is not
necessary to perform a much more computationally extensive and costly doubling of the grid with
this method of grid refinement.

3. RESULTS

Calculations of the flow around a DLBA 243 DTE aerofoil are presented below. The DLBA 243 DTE
aerofoil is the trailing-edge-modified DLBA 186 supercritical aerofoil with a trailing edge thickness
of 0�57%.4 For this grid dependence study, calculations were performed on the coarse (140695),
medium (1856125) and fine (2356160) grids shown inFigures 2–4respectively. Calculations
were done at a Mach number of 0�74 at 1�809� angle of attack and a Reynolds number of 14�56106.
These conditions represent the highest values of cruise Mach number and lift coefficient and result in

Figure 2. Coarse computational mesh for DLBA 243 aerofoil with 140695 nodes
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Figure 3. Medium computational mesh for DLBA 243 aerofoil with 1856125 nodes

Figure 4. Fine computational mesh for DLBA 243 aerofoil with 2356160 nodes
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the strongest shock calculated on the DTE aerofoil. Owing to the presence of a strong shock, these
conditions were judged to have the largest numerical uncertainties.

Iterative convergence

The development of the aerodynamic coefficients and average residual with iterations is shown in
Figures 5–8. It is apparent that after approximately 1000 iterations the slope of these curves is small,
with the change in lift coefficient per time step less than 361075. Iterations were continued to 1400
to verify that no significant changes occur with further iterations. At 1400 iterations the slope of all
aerodynamic coefficients reduces to less than 361076 and is negligible, and lift and drag increase
by only 0�30% over the values at 1000 iterations. The average residual shown inFigure 8reduces
quickly to a low value after approximately 500 iterations and then continues to decrease slowly; for
practical purposes, 1000 iterations were used for production runs with the present code.14

Grid dependence

To assess the effect of the shock on the suction side of the aerofoil on the overall accuracy of the
solution, relative differences in the surface pressure distribution are plotted along the aerofoil surface
in Figure 9and the grid convergence index inFigure 10. Agreement in the calculated surface pressure
distribution of the three different grids is better than 1% to 1�3% for the fine and coarse grids
respectively compared with the medium grid. Only the region of the shock has larger discrepancies of
5�5% for the fine and 40% for the coarse grid, since the shock location is shifting. Resulting lift
coefficients are within 0�07% and 1�9% for the fine and coarse grids respectively compared with the
medium grid.Figures 10 and 11show the localGCIs on the upper and lower surfaces, respectively.
The GCIs of the different grids is relatively uniform, increasing only slightly in the leading edge
region where the transition point to turbulent flow was set, and showing a significant jump in the
shock region. Upstream and downstream of the shock theGCI remains constant at less than 10% of

Figure 5. Time history of lift coefficient
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Figure 6. Time history of drag coefficient

Figure 7. Time history of moment coefficient
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Figure 8. Time history of average residual

Figure 9. Calculated surface pressure distribution with coarse, medium and fine meshes
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Figure 10. Grid convergence indices for pressure coefficient on suction-side surface

Figure 11. Grid convergence indices for pressure coefficient on the pressure-side surface
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its maximum in the shock. Also,GCI for both the fine and coarse grid solutions are of the same order
of magnitude, suggesting near-asymptotic behaviour of the solution with increasing refinement of the
grid.

Resolution

Figures 12–14present the pressure contours in the flow field around the aerofoil. Again agreement
is very good, except on the coarse grid in the recovery region and the wake, where a considerable
fluctuation of pressure can be observed. This results from the coarse spacing of the grid nodes in this
region, which is insufficient to resolve either the boundary layer near the aerofoil or the recirculation
region. This local disturbance has only a small effect on the overall accuracy of this grid. The
resolution of the 1856125 node grid was judged to be adequate for the present purposes and was
used for the calculations to compare supercritical aerofoils.14

Global grid convergence

The GCIs for the fine and coarse grid solutions are shown inTable I and Figure 15. Grid
convergence indices achieved with the medium grid for the lift and moment coefficients are 0�07%
and 2�3%, which are good values for engineering applications. The value achieved for the drag
coefficient is comparatively high at 41% owing to the greater dependence of this parameter on
numerical errors. However, as will be argued in the following section, the convergence achieved is
adequate for engineering applications, especially performance comparisons of different aerofoils.

Figure 12. Distribution of pressure coefficient around DLBA 243 aerofoil calculated with the coarse mesh
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Figure 13. Distribution of pressure coefficient around DLBA 243 aerofoil calculated with the medium mesh

Figure 14. Distribution of pressure coefficient around DLBA 243 aerofoil calculated with the fine mesh
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Shock location varies by less than 4% between the coarse grid and the medium grid and by less
than 1% between the medium grid and the fine grid, suggesting a successful use of the shock-
capturing method.

4. CONCLUDING REMARKS

The main problem with calculating transonic aerofoils is accurately predicting the location and
strength of the shock. The shock location is very sensitive to the properties of the grid in its vicinity
and its effect on the flow field in the rear portion of the aerofoil, as well as the ultimate drag level.
The shock-capturing method used here was shown to capture the shock within 1% of chord; however,
it is smeared over two or three grid points and its location does not remain stationary with iterations.
These oscillations of the shock propagate like pressure waves throughout the entire computational

Table I. Grid convergence indices for DLBA 243aerofoil calculations

Fine grid solution (140695
versus 1856125)

Coarse grid solution
(2356160 versus 1856 125)

Cl 0.0772 0.0006
Cd 0�3801 0�4157
Cm 0�1852 0�0363
Shock location 0�0443 0�0880
Wake length 0�7079 0�2262
TE stagnation point 0�4634 0�2432

Figure 15. Grid convergence index for calculated aerodynamic coefficients and locations of flow features
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domain and act to delay convergence. Slight sinusoidal oscillations of the solution were still present
after 1400 time steps, but compared with the absolute value of the solution parameter, these
oscillations were less than 0�01% and negligible for engineering purposes.

Estimating the grid dependence of a transonic calculation using a simple convergence criterion
such as the Richardson extrapolation, which does not take discontinuities into account, is
problematic. Comparing the convergence indices between the grids, it is apparent that they give
only estimates of the grid convergence index of the solution. The lift coefficient is less dependent on a
realistic turbulence model, since viscous effects do not affect it very strongly. In contrast, drag is
strongly dependent on smaller changes, including numerical errors, turbulence, pressure distribution
and shock location, and consequently the calculated drag levels have a higher percentage uncertainty.
As shown in theGCIs over the aerofoil, errors through the shock are large but localized. TheGCIs
calculated give an approximate determination of the reliability of the solution if the shock location is
well fixed.

The grid refinement method used here allows the assessment of grid dependence with relatively
small arbitrary refinement ratios. It is not necessary to perform an exact halving of the spacing
resulting in a doubling of the grid size for each refinement step. In this case, the range of refinement
was only 1�68 between coarse and fine grids. This illustrates the power of theGCI formulations, since
an adequately fine grid can be determined by relatively small refinement steps, which should result in
dramatic reductions in computational expense.

For the design of aerofoil sections, the main interest is in comparisons. When compared with
experimental results, lift is calculated within 2% and drag within 5%, so relative lift-to-drag
differences are within 7%. The calculations byThompson and Lotz14 clearly show that the benefits of
DTE aerofoils, i.e. delayed shock, higher lift at the same angle of attack and higherL=D at the same
lift coefficient of the DTE aerofoil compared with the baseline aerofoil, are resolved and magnitudes
of the difference are in good agreement.

APPENDIX: NOMENCLATURE

c chord length
c1, c2 experimental constants in Sutherland formula
Cd drag/(12 rU 2c), drag coefficient
Cl lift/( 1

2 rU 2c), lift coefficient
Cm moment/(12 rU 2c2), moment coefficient
D van Driest damping coefficient
e relative error
E estimated fractional error
GCI grid convergence index
h enthalpy
hi grid spacing
l characteristic length
M Mach number
p order of method
P pressure
q dynamic pressure
r grid refinement
Re Reynolds number
RESAV average residuals
t time
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T temperature
u, U, velocity
x, y, z Cartesian co-ordinates
y� Ut y=, dimensionless co-ordinate normal to wall

Greek letters

a angle of attack
g specific heat ratio
d boundary layer thickness
e turbulent eddy viscosity
k Von Karman constant
m dynamic viscosity
n kinematicviscosity
r density
t shear stress
f transport variable

Subscripts

ps pressure side
ss suction side
t time derivative
TE conditions at trailing edge
x, y spatial derivatives
0 stagnation conditions
1, 2 fine, coarse grid
? freestream conditions
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